Logaritma Adalah

Logaritma Adalah

Sejarah Singkat Logaritma

Sebelum berlatih mengerjakan contoh soal logaritma, ada baiknya elo tahu dulu apa saja sejarah dari perkembangan logaritma serta siapa ilmuwan pertama yang menemukan konsep ini. Simak penjelasan berikut.

Sejarah logaritma berawal dari John Napier, seorang ahli matematika berkebangsaan Inggris, yang mengemukakan mengenai metode logaritma dalam bukunya yang berjudul Mirifici Logarithmorum Canonis Descriptio pada tahun 1614.

Kata logaritma yang diciptakan oleh Napier berasal dari bahasa Latin Tengah, “logaritmus” yang artinya “rasio-bilangan,” dengan pecahan kata dari bahasa Yunani logos “proporsi, rasio, kata” dan arithmos “bilangan”.

Berkat penemuan Napier terkait logaritma, para ilmuwan lainnya merasa sangat kagum dan terkesan karena mereka dapat mengerjakan dan menyelesaikan operasi hitung perkalian dan pembagian yang sulit dengan lebih mudah dan cepat.

Napier meninggal pada tahun 1617 dan semasa hidupnya dihabiskan untuk mempelajari dan mendalami ilmu matematika.

Nah, sebenarnya banyak ada penemu-penemu lainnya yang selanjutnya berkontribusi dalam mengembangkan konsep logaritma. Namun, dalam sejarah logaritma, John Napier-lah yang dianggap sebagai pelopor logaritma pertama.

Download Aplikasi Zenius

Tingkatin hasil belajar lewat kumpulan video materi dan ribuan contoh soal di Zenius. Maksimaln persiapanmu sekarang juga!

Setelah mengetahui sejarah singkat mengenai logaritma, elo pasti bertanya, apa itu logaritma? Nah, logaritma adalah suatu operasi invers atau kebalikan dari perpangkatan.

Jika diketahui suatu perpangkatan

maka bentuk tersebut dapat dituliskan dalam bentuk logaritma menjadi

dengan a > 0 dan a ≠ 1.

b = bilangan yang dicari nilai logaritmanya (numerus)

c = besar pangkat/nilai logaritma

Sebagai contoh, misalkan diberikan ²log 8 = c maka c = 3, karena 2³ = 8.

Sehingga dapat disimpulkan bahwa logaritma merupakan suatu operasi kebalikan dari perpangkatan, yaitu mencari nilai yang menjadi pangkat dari suatu bilangan.

Biar lebih paham lagi dengan rumus logaritma, perhatikan beberapa contoh di bawah ini.

Jika nilai a = 10, biasanya 10 tidak dituliskan sehingga menjadi log b = c.

Sebagai contoh, jika 10³ = 1000 maka dalam bentuk logaritma menjadi log 1000 = 3.

Jadi, elo sudah tahu kan apa itu logaritma karena sudah dijelaskan di atas.

Selanjutnya, logaritma memiliki sifat-sifat yang wajib dipahami. Karena untuk menyelesaikan contoh soal logaritma yang akan gue berikan dan juga soal-soal lainnya, elo harus paham betul terhadap sifat-sifat logaritma tersebut. Apa saja sifat-sifat logaritma? Yuk, perhatikan penjelasan berikut.

● Pertidaksamaan Logaritma

Cara pertama guna menyelesaikan pertidaksamaan logaritma ini yaitu dengan menyamakan suatu bilangan pokoknya. Setelah itu, Anda perlu untuk mengikuti beberapa cara dibawah ini, antara lain:

● a log f(x) ≥ a log g(x)

Untuk bilangan pokok 0 < a < 1 f(x) ≤ g(x) f(x) > 0 g(x) > 0

Untuk bilangan pokok a>1

f(x) ≥ g(x) f(x) > 0 g(x) > 0

● Persamaan Logaritma

Menyelesaikan persamaan logaritma dengan cara menyamakan suatu bilangan pokoknya. Berikut adalah teknik menghitungnya, antara lain: » a log f(x) = 8 log g(x), Caranya yaitu: f(x) = g(x) f(x) > 0 g(x) > 0

Bagi Anda yang belum mengetahui atau belum mempelajari tentang eksponensial atau bisa disebut juga dengan perpangkatan. Maka Anda perlu mengetahuinya secara lebih dalam lagi. Lalu, Apa saja yang bisa Anda pelajari dan pahami dari materi eksponensial ini?

Konsep materi dari eksponensial yang akan dipakai pada pembahasan kali ini yaitu mempelajari materi dari logaritma. Materi logaritma ini sangat penting Anda ketahuinya, agar Anda dapat mengetahui manfaat dari logaritma dalam kehidupan sehari-hari. Nah, Apa saja itu? Mari perhatikan pembahasan berikut ini mulai dari pengertian logaritma hingga contoh soal.

Mengetahui sifat dari logaritma, di dalam suatu ilmu matematika, logaritma adalah kebalikan atau invers dari eksponen atau pemangkatan. Secara sederhananya saja, logaritma bisa diartikan sebagai suatu invers atau kebalikan dari pemangkatan yang digunakan dalam menentukan besaran pangkat pada sebuah bilangan pokok.

Sehingga intinya bahwa dengan Anda mempelajari ilmu logaritma, maka Anda akan bisa mencari besaran pangkat dari suatu bilangan yang telah diketahui hasil pangkatnya.

Fungsi logaritma ini tidak cuma dipakai di dalam sebuah ilmu matematika saja, akan tetapi juga dipakai di dalam ilmu pengetahuan alam atau biasa dikenal dengan sebutan IPA. Serta juga digunakan pada ilmu kimia guna menentukan orde reaksi, pengetahuan akan akustik guna memilih koefisien serap bunyi yang pas, dan lain sebagainya. Selain itu, logaritma ini juga dipakai dalam mengukur laju pertumbuhan dari penduduk, antropologi dan keuangan guna menghitung bunga majemuk.

● Pertidaksamaan Logaritma

Cara pertama guna menyelesaikan pertidaksamaan logaritma ini yaitu dengan menyamakan suatu bilangan pokoknya. Setelah itu, Anda perlu untuk mengikuti beberapa cara dibawah ini, antara lain:

● a log f(x) ≥ a log g(x)

Untuk bilangan pokok 0 < a < 1 f(x) ≤ g(x) f(x) > 0 g(x) > 0

Untuk bilangan pokok a>1

f(x) ≥ g(x) f(x) > 0 g(x) > 0

Logaritma Pada Kehidupan Sehari-Hari

Logaritma banyak dimanfaatkan dalam sebuah kehidupan sehari-hari. Dahulu, sebelum masyarakat mengenal adanya kalkulator, logaritma dimanfaatkan untuk menghitung perhitungan eksponensial.

Selain itu, ada manfaat lain dalam konsep logaritma ini. Konsep logaritma tersebut dipakai untuk melakukan perhitungan seismograf maupun alat pengukur kekuatan gempa.

Satuan skala richter ini juga memakai konsep logaritma di dalam perhitungannya. Dalam bidang astronomi juga dipakai sebagai alat perhitungan dalam mengukur tingkat keterangan dari suatu bintang. Nah, bagi Anda yang penasaran, bagaimana rumus logaritma. Berikut telah disajikan informasi terkait rumus logaritma.

Pada pembahasan sebelumnya Anda telah mengetahui pengertian dari logaritma dan manfaat dari logaritma. Berikut merupakan pembahasan terkait rumus logaritma, diantaranya:

● Bentuk dari logaritma yang telah dinyatakan ke dalam bentuk alog b = c. ● Simbol a menyatakan suatu bilangan pokok logaritma maupun basis, b dengan menentukan range atau hasil dari logarigma, dan c adalah domain logaritma.

Setelah Anda mengetahui tentang rumus logaritma, Anda juga perlu mengetahui sifat logaritma.

Logaritma juga mempunyai sifat yang beraneka macam, nantinya sifat-sifat ini pula akan dapat membantu Anda dalam menyelesaikan soal-soal terkait logaritma. Cara yang dapat Anda lakukan yaitu mengetahui sifat logaritma, diantaranya sebagai berikut:

● Sifat logaritma dasar, yakni suatu bilangan yang dipangkatkan dengan angka 1, maka hasilnya akan tetap sama seperti yang sebelumnya. ● Sifat logaritma koefisien, yakni saat terdapat contoh terkait soal logaritma yang diberikan mempunyai pangkat. Maka pangkat dari basis atau biasa disebut numerus sebagai koefisien dari logaritma. ● Sifat logaritma akan berbanding terbalik, yakni suatu sifat yang mempunyai prasyarat berupa logaritma yang berbanding terbalik antara basis terhadap numerus. ● Sifat perpangkatan logaritma, adalah suatu bilangan yang dipangkatkan dengan logaritma yang mempunyai basis sama, maka hasilnya akan berupa suatu numerus dari logaritma itu sendiri. ● Sifat Penjumlahan dan pengurangan merupakan logaritma yang dapat dijumlahkan dengan logaritma lainnya yang mempunyai basis yang serupa. ● Sifat perkalian dan juga pembagian logaritma, adalah dua buah logaritma yang disederhanakan. Sebab keduanya mempunyai numerus yang serupa. ● Sifat logaritma numerus terbalik, maka logaritma bisa mempunyai nilai yang serupa dengan logaritma lainnya. Bila numerus menggunakan pecahan terbalik.

Selain itu, terdapat sejumlah sifat logaritma lainnya, yang penting untuk Anda ketahuinya, diantaranya:

● a log a = 1 ● a log 1 = 0 ● a^nlog bm = (m/n) x a log b ● a^mlog bm = a log b ● a log b = 1/b log a ● a log b = (klog b) / (klog a) ● a(a log b) = b ● a log b + a log c = a log (bc) ● a log b – a log c = a log (b/c) ● a log b . b log c = a log c ● a log (b/c) = – a log (c/b)

Selanjutnya terdapat pembahasan terkait persamaan logaritma. Mari perhatikan secara seksama.

Secara umum logaritma mempunyai sejumlah teknik penyelesaian yang mencakup persamaan logaritma, pertidaksamaan logaritma, dan juga cara menghitung logaritma. Berikut adalah pembahasannya.

Sifat Penjumlahan Logaritma

Sifat penjumlahan logaritma adalah dua numerus logaritma yang dijumlahkan akan berubah menjadi perkalian antarnumerus asalkan basisnya sama. Artinya, logaritma bisa dijumlahkan dengan logaritma lain menghasilkan bentuk logaritma perkalian. Perhatikan contoh berikut.

2 log3 + 2 log4 = 2log(3×4)

Dari contoh di atas, diketahui bahwa sifat logaritma perkalian merupakan bentuk ringkas dari penjumlahan dua atau lebih logaritma yang basisnya sama.

Buku Saku Hafal Mahir Teori dan Rumus Matematika SMA/MA Kelas 10, 11, 12

Buku Saku Hafal Mahir Teori dan Rumus Matematika SMA/MA Kelas 10,11,12 merupakan buku belajar yang praktis dan lengkap.

Buku Saku Hafal Mahir Teori dan Rumus Matematika dapat menjadi solusi belajar menyenangkan kapan saja dan di mana saja.

● Persamaan Logaritma

Menyelesaikan persamaan logaritma dengan cara menyamakan suatu bilangan pokoknya. Berikut adalah teknik menghitungnya, antara lain: » a log f(x) = 8 log g(x), Caranya yaitu: f(x) = g(x) f(x) > 0 g(x) > 0

● Tabel Logaritma atau Cara Menghitung Logaritma

Tabel logaritma dipakai guna mempermudah dan membantu Anda dalam menghitung nilai logaritma. Dengan menerapkan sifat logaritma yang telah dipelajari pada pembahasan sebelumnya, maka akan dapat secara mudah untuk menyelesaikan perhitungan dari logaritma itu sendiri.

Cara memakai tabel logaritma ini, yakni dengan memilih angka yang sesuai dengan bagian kolom sebelah kiri dan pada bagian baris sebelah atas. Setelah itu, Anda akan menjumpai angka yang sesuai pada bagian baris dan juga kolom. Kemudian, carilah nilai logaritma yang sesuai dengan baris dan juga kolom tersebut.